
MATH 244 Linear Algebra Eigenvalues and Eigenvectors Spring 2025

Consider the linear mapping T : R2 → R2 defined by the matrix A =

[
2 1
1 2

]
.

Question: Given a vector x ∈ R2, how are x and its image under T related geometrically?

Let’s compute the images of the standard basis vectors under T . We have

[
2 1
1 2

] [
1
0

]
=

[
2
1

]
and

[
2 1
1 2

] [
0
1

]
=

[
1
2

]
As you can see, T acts on the standard basis vectors by both “stretching” and “rotating” them.

Question: Are there any vectors other than the zero vector that undergo only stretching (or shrinking) and no rotation? if
there is such a vector, say x ̸= 0, then it must satisfy the equation T (x) = λx, where λ is a scalar.

We have

T (x) =

[
2 1
1 2

] [
x1

x2

]
=

[
2x1 + x2

x1 + 2x2

]
and

λx =

[
λx1

λx1

]
.

Then T (x) = λx implies [
2x1 + x2

x1 + 2x2

]
=

[
λx1

λx2

]
,

which is equivalent to the system

(2− λ)x1 + x2 = 0

x1 + (2− λ)x2 = 0

This homogeneous system has the matrix form[
(2− λ) 1

1 (2− λ)

] [
x1

x2

]
=

[
0
0

]
.

Note that the matrix

[
(2− λ) 1

1 (2− λ)

]
can be written as A−λI2. Thus, the homogeneous system has a nontrivial solution

if and only if det(A− λI2) = 0. As you can see, det(A− λI2) is a polynomial in λ, which leads to the following definition.

Definition Let A ∈ Rn×n. The polynomial det(A− λIn) is called the characteristic polynomial of A.

Let’s go back to our previous example

[
(2− λ) 1

1 (2− λ)

] [
x1

x2

]
=

[
0
0

]
.

Let’s find the values of λ for which the coefficient matrix in singular. Set det(A− λI2) = 0. If you solve this equation, the
roots (zeros) of the characteristic polynomial are λ = 1 and λ = 3.

When λ = 1, the coefficient matrix becomes

[
1 1
1 1

]
, and the set of solutions to the system is the set of all scalar multiples of

the vector

[
1
−1

]
. That is, when λ = 1, the set of solutions to the system Span

([
1
−1

])
. This means T leaves all the vectors

on the line Span
([

1
−1

])
fixed.

Note: Span
([

1
−1

])
is the kernel of the coefficient matrix when λ = 1. Equivalently, ker(T − λI) = Span

([
1
−1

])
when

λ = 1.
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When λ = 3, the coefficient matrix becomes

[
−1 1
1 −1

]
, and the set of solutions to the system is the set of all scalar multiples

of the vector

[
1
1

]
. That is, when λ = 3, the set of solutions to the system span

([
1
1

])
. This means T stretches every vector

on the line span
([

1
1

])
by a factor of 3.

Note: Span
([

1
1

])
is the kernel of the coefficient matrix when λ = 3. Equivalently, ker(T − λI) = Span

([
1
1

])
when λ = 3.

What does T do to the unit circe? Let

[
x1

x2

]
, where x2

1 + x2
2 = 1. By a previous computation, we know that

T (x) =

[
2 1
1 2

] [
x1

x2

]
=

[
2x1 + x2

x1 + 2x2

]
.

Where does the image lie? A straightforward computation yields that the point (2x1 + x2, x1 + 2x2) satisfies the equation

5x2
1 − 8x1x2 + 5x2

2 = 9.

The equation 5x2
1 − 8x1x2 +5x2

2 = 9 describes a rotated ellipse with semimajor axis 3 along the line x1 = x2 and semiminor
axis along the line x1 = −x2. The map T takes the unit circle to the ellipse as shown in the following figure:

T will take other circles centered at the origin to ellipses concentric to the one above.

What have we done so far? We have determined the vectors other than the zero vector that undergo only stretching (or
shrinking) and no rotation under a linear map. In general, given a vector space V and a linear mapping T : V → V , we will
want to study T by finding all vectors x satisfying equations T (x) = λx for some scalar λ.

The following two definitions follow from our example.

Definition Let V :→ V be a linear mapping.

(1) A vector x ∈ V is called an eigenvector of T if x ̸= 0 and there exists a scalar λ ∈ R such that T (x) = λx.
(2) If x is an eigenvector of T and T (x) = λx, the scalar λ is called the eigenvalue of T corresponding to x. That is, an

eigenvalue of T is a scalar λ for which there exists a nonzero vector x such that T (x) = λx.

Example 1 In the previous example, the vector

[
1
1

]
is an eigenvector of T with eigenvalue λ = 3, whereas the vector

[
1
−1

]
is an eigenvector with eigenvalue λ = 1. Any nonzero scalar multiple of either of these two vectors is also an eigenvector for
the mapping T .

Example 2 Recall the orthogonal projection map we discussed in class. Let x ∈ R2. Then the orthogonal projection of x
onto the line spanned by the vector w is a map from R2 to R2 defined by

projL(x) =
( x ·w
w ·w

)
w



Let L be the x-axis, and choose w to be the unit vector

[
1
0

]
. Then

• Any vector of the form

[
a
0

]
, where a ̸= 0, is projected to itself. That is,

projL

([
a
0

])
=

[
a
0

]
.

This means, any vector

[
a
0

]
, where a ̸= 0, is an eigenvector of projL(·) with eigenvalue λ = 1.

• Any vector of the form

[
0
b

]
, where b ̸= 0, is projected to

[
0
0

]
. That is,

projL

([
0
b

])
=

[
0
0

]
= 0 ·

[
0
b

]
.

This means, any vector

[
0
b

]
, where b ̸= 0, is an eigenvector of projL(·) with eigenvalue λ = 0.

• Let T : R2 → R2 be a rotation through an angle θ ̸= 0,±π,±2π, and so on. The T has no eigenvectors or eigenvalues.
Geometrically, if you rotate a vector in R2 by an angle which is not a scalar multiple of π, then T (x) never lies on
the same line through the origin as x if x ̸= 0, hence T (x) is never a vector of the form λx.

The discussion from our very first example leads to the following results and definitions.

• A vector x is an eigenvector of T with eigenvalue λ if and only if x ̸= 0 and x ∈ Ker(T − λI).

• Let A ∈ Rn×n. Then λ ∈ R is an eigenvalue of A if and only if det(A−λI) = 0. The roots (zeros) of the characteristic
polynomial are called eigenvalues of A.

• Recall the characteristic polynomial of a matrix A. Let A ∈ Rn×n. The polynomial det(A − λIn) is called the
characteristic polynomial of A. We can also define the characteristic polynomial as a polynomial in variable t:
p(t) = det(A− tIn). Then it can be shown that p(A) = 0 (the n× n zero matrix). We can use this result to find the
inverse of the matrix A (an example will be added to the next class activity).

• Let A ∈ Rn×n. The characteristic polynomial det(A−λIn) is a polynomial (in variable λ) of degree exactly n. Then A
has no more than n distinct eigenvalues. If λ1, λ2, . . . , λk are distinct eigenvalues of A of multiplicity m1,m2, . . . ,mk,
respectively, then m1 +m2 + · · ·+mk ≤ n.

• Let T : V → V be a linear mapping, and let λ ∈ R. The λ-eigenspace of T , denoted Eλ, is the set

Eλ = {x ∈ V |T (x) = λx}.

Eλ is the collection of all the eigenvectors of T associated with eigenvalue λ, together with the vector 0. If λ is not
an eigenvalue, then Eλ = {0}. Eλ = Ker(T − λI), which is a subspace of V for all λ.

Defintion Consider two n× n matrices A and B. We say that A is similar to B if there exists an invertible matrix Q such
that B = Q−1AQ.

It can be shown that similar matrices have equal characteristic polynomials. That is, if A is similar to B, then

det(A− λIn) = det(B − λIn).


